
Fig. 2.1  RC filter.

RC filter
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R

y(t)x(t) C
Voltage balance? 

Current through resistor R and capacitance C:

First order linear differential equation

Differential equation 
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x2(t) y2(t) 

x3(t) = a x1(t)  + b x2(t) y3(t) = ?

y3(t) = a y1(t)  + b y2(t) Property of 
linear system:

x1(t) y1(t) 

Input Output

RC filter = linear (time invariant) system = LTI system

Linearity
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What is the solution to arbitrary input signals ?

x(t) = 0:

Frequency response function and Fourier transform

Approach: Solve for harmonic signals,
then construct arbitrary signals from harmonic signals.

„Fourier  transform“

for zero input signal x(t)

Solution: y(t) = − 1
RC

⋅ e
−

t
RC
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Fourier transform

Back transformation: x(t) = 1
2π X( jω)e jωtdω

−∞

∞

∫

Definition:
 
F x(t){ } = X( f ) = x(t)e− j2πftdt

−∞

∞

∫

Common practice to 
write (with              ): X( jω ) = x(t)e− jωtdt

−∞

∞

∫
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Transform properties of the Fourier transform

• Time shifting —  x(t − a)⇔ X( jω) ⋅ e− jωa

• Derivative — 
d
dt
x(t)⇔ jω ⋅ X( jω)

• Integration — x(t)dt ⇔ 1
jω

⋅ X( jω)
−∞

∞

∫

(⇔  indicates a transform pair, x(t)⇔ X( jω) ):
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Convolution
h(t)

t

τ

h τ( )

h τ–( )

τ

τ

h t1 τ–( )

τ

g t1( ) f τ( )h t1 τ–( )dτ

∞–

∞

∫=

t1

t1

f τ( )

τ

f(t)

t

t1

g(t)

t

g t1( )

Fig. 2.5 Graphical interpretation of the convolution operation.

∗

• Convolution Theorem — 

f(t)∗h(t)⇔ F(jω) ⋅H(jω)

g(t) = f (t)∗h(t) = f (τ ) ⋅h(t − τ )dτ
−∞

∞

∫
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Harmonic input signal:  

Ansatz  for  the output signal: 

Frequency response function

Harmonic input signals
for harmonic input signal x(t)

y(t) = Aoe
jωt

 &y(t) = jωAoe
jωt

Aoe
jωt (RCjω +1) = Aie

jωt

Ao
Ai

=
1

RCjω +1
= T ( jω)

x(t) = Aie
jω t
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Input/output relation 

Ao = T ( jω) ⋅ Ai
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Polar form 

For:
1

α + jβ
:    Φ = arctan −β

α






     and    ... = 1
1+ (RCω)2

polar formT ( jω) = 1
RCjω +1

Identities: 1
α + jβ

=
α

α 2 + β 2 − j
β

α 2 + β 2       and     Φ = arctan Im
Re







and T ( jω) = 1
1+ (RCω)2

⋅ e jΦ(ω )

Φ(ω) = arctan(−RCω) = − arctan(RCω)
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Problem 2.1
Proof that the output signal of the RC filter for a sinusoidal input 
signal Aisin (   t) is again a sinusoidal signal and determine its 
frequency and phase. Make use of Euler’s formula (siny = (ejy-e-jy)/2j) 
and the two equations:

Use  |T(j (- ω))| = |T(j (ω))| and Φ(− ω) = −Φ(ω) 

T ( jω) = 1
1+ (RCω)2

⋅ e jΦ(ω )

Φ(ω) = arctan(−RCω) = − arctan(RCω)
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Fig. 2.6 Frequency response function and the eigenvector/eigenvalue concept. 

The frequency response function and the 
eigenvalue / eigenvector concept

A0 sin(ω0t)→
1

1+ (RCω0 )
2
sin(ω0t − arctan(ω0RC))

 
rx→ λ

rx

 

rx→ Arx
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The frequency response and arbitrary input signals

Ai ( jω) →  harmonic component of the Fourier spectrum X( jω) (input)
Ao( jω ) →  harmonic component of the Fourier spectrum Y ( jω) (output)

The frequency response function relates the Fourier spectrum of the
output signal Y ( jω) to the Fourier spectrum of the input signal  X(jω) :

T ( jω) = Y ( jω)
X( jω)

 • Definition — The frequency response function            is 
defined as the Fourier transform of the output signal divided by 
the Fourier transform of the input signal.

T ( jω)
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Fourier spectrum of the filter output:

The frequency response function can be measured by comparing 
output and input signals to the system without further knowledge 
of the physics going on inside the filter!

Input/output relation

Y ( jω) = T ( jω) ⋅ X( jω)
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Transfer function and Laplace transform

s = σ + jω

Bilateral Laplace transform of  f(t):

with the complex variable

 
L f (t)[ ] = f (t)e− stdt

−∞

∞

∫

Property:
  L

&f (t)  = s ⋅F(s)

 L f (t)[ ]  will be written as F(s).
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Transfer function and Laplace transform

transfer function

with Y(s) and X(s) being the Laplace transforms of y(t) and x(t), 
respectively.

T (s) = Y (s)
X(s)

=
1

1+ sRC
=

1
1+ sτ

Transforming equation 

we obtain:using
  L

&f (t)  = s ⋅F(s)
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 • Definition — The transfer function T(s) is defined as 
the Laplace transform of the output signal divided by 
the Laplace transform of the input signal.

Laplace transform of the output signal:

“pole” 

Transfer function

Special cases:RC Filter:

T (s) = 1
1+ sτ

a)  s→ jω  ⇒  T (s)→ T ( jω)

b) s→ −
1
τ

 ⇒  T (s)→∞
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The impulse response function

Dirac delta 'function' δ (t)       f (t)δ (t − τ )dt = f (τ )
−∞

∞

∫

Fig. 2.7 Generation of a delta function.

Generation:
δ (t)

unit area

t
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From the conditions of unit area and infinitesimal duration we obtain

and    δ (t) = 0  for  t ≠ 0

δ (t)dt = 1
−∞

∞

∫

Properties

 
F δ (t){ } = δ (t) ⋅ e− j2π ftdt = 1

−∞

∞

∫

 
L δ (t){ } = δ (t) ⋅ e− stdt = 1

−∞

∞

∫
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Response of a filter to an impulsive 
(delta function) input signal.

Properties:

 • The transfer function T(s) is the Laplace 
transform of the impulse response function.

The impulse response function 

 • The frequency response function T(j  ) is 
the Fourier transform of the impulse response 
function.
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Proof:

Consider T(s)  for x(t) =  (t)  and hence X(s) =1. In this case, the output 
signal y(t) becomes the impulse response function h(t) with H(s)  being 
its Laplace transform.

The same argument can be made for the frequency 
response function

for x(t) = δ (t)

T ( jω) = Y ( jω )
X( jω )

=
Y ( jω )

1
= H ( jω )        for x(t) = δ (t)
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Fourier spectrum of a filter output signal: 

Convolution theorem:  

Consequences:

Y ( jω) = T ( jω) ⋅ X( jω)

T ( jω) ⋅ X( jω) = H ( jω) ⋅ X( jω)   ⇔    h(t)∗ x(t)

Filtering

y(t) = h(t)∗ x(t)

Y ( jω) = T ( jω) ⋅ X( jω)

Y (s) = T (s) ⋅ X(s)

Tuesday, September 1, 2009



Impulse response function of the RC filter

Transfer function of RC filter:      1
1+ sτ

General type:      
K
s + a

    with K = 1 / τ  and a = 1 / τ .

Considering   f (t) = K ⋅ e−atu(t)   with  u(t) being the unit step function:

F(s) = K e−ate− stu(t)dt = K e−(s+a)tdt = −K
e−(s+a)t

s + a









o

∞

0

∞

∫
−∞

∞

∫

The equation  above exists only for Re{s+a} > 0 or Re{s} > Re{-a }where it becomes  

K
s + a
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The region where F(s) the exists is called region
of convergence

Fig. 2.8 Region of conver gence of  F(s)The pole location at  -1/    is marked by an X. 

 

Hence is the Laplace transform of 
1

1+ sτ

y(t) = 1
τ
e
−

1
τ
t
       for  t > 0

−
1
τ

 is
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The transfer function of a system is the Laplace transform 
of  its impulse response function. 

   for t > 0 is the impulse response of RC filter.y(t) = 1
τ
e
−
1
τ
t

Alternative solution:

f (t) = −K ⋅ e−atu(−t)   ,with u(−t) being the time inverted unit step function:

= K
e−(s+a)t

s + a









−∞

0

=
K
s + a

F(s) = −K e−ate− stu(−t)dt = −K e−(s+a)dt
−∞

0

∫
−∞

∞

∫
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Region of convergence:   Re{s+a} < 0  or Re{s} < Re{-a}  

Fig. 1.15  Region of convergence of alternative solution The pole location at  -1/    is marked by 
an X. 

−1
τ

−1 / τ

jω

σ

Tuesday, September 1, 2009



Impulse response       Inverse Laplace transform of T(s)

Inverse Laplace transform:

The path of integration must lie in the region of convergence. 

 Inverse Fourier transform

⇔

f (t) = 1
2π j

F(s)estds = 1
2π

F( jω)e jωtdω
−∞

∞

∫
σ − j∞

σ + j∞

∫

Special case:  s = jω

 
L −1 F(s)[ ] = f (t) = 1

2π j
F(s)estds

σ − j∞

σ + j∞

∫
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ROC: right half plane  => right-sided impulse response
          left half plane    => left-sided impulse response

ROC and type of impulse response

Example:   

causal:

anti-causal:

F(s) = K
s + a

f (t) = K ⋅ e−atu(t)  for t > 0

f (t) = −K ⋅ e−atu(−t)  for t < 0

Tuesday, September 1, 2009



case a)  pole is located in the left half  s plane =>  causal IR decays

In general:

In order for a causal system to be stable, all the poles of 
the transfer function have to be located within the left 
half of the complex s plane.

RC filter: (physically realizable IR)

Condition for stability

case b)  pole is located in right half plane => causal IR grows to infinity

Caution! For anticausal signals the opposite is true. For a pole at 1 / τ  the
anticausal signal y(−t) = (1 / τ )e(1/τ )(− t )u(−t) would well be stable, although
physically unrealizable. 

 with pole position spy(t) = sp ⋅ e
sptu(t)

time dependence:  −1 / τ   ⇔   location of pole of T (s)

y(t) = 1
τ
e
−
1
τ
t
u(t)
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X

σ

jω

s p

σ

jω

s p

X

Do  and  have a Fourier transform?f1 t( ) f 2 t( )

Review

 
L f1(t)[ ] = L f2 (t)[ ] = K

s − sp

Anti-causal function

 L f2 (t)[ ]  exists for Re s{ } < Re sp{ }

f2 (t) = −K ⋅ esptu(−t)    for  t < 0

Causal function

 L f1(t)[ ]  exists for Re s{ } > Re sp{ }

f1(t) = K ⋅ esptu(t)    for  t ≥ 0
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Impulse response f(t)?

Depending on intergration path for inverse transform

Stability?

Review

 
L f (t)[ ] = K

s − sp

causal

f1(t) = K ⋅ esptu(t) 

anti-causal

f2 (t) = −K ⋅ esptu(−t)

f1 t( ) 0≠ for t > 0

stable for R e sp
{ } 0<

for t > 0f1(t) = K ⋅ espt

f
2
t( ) 0≠ for t < 0

stable for R e s p
{ } 0>

for t < 0f2 (t) = −K ⋅ espt

for any integration 
path in ROC

 f (t) = L −1 F(s)[ ]
or

ROC has to contain 

 f (t) = F −1 F( jω)[ ]

jω
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The frequency response function and the pole position

Fig. 2.10  Representation of the RC filter in the s plane. The pole location at -1/   is marked by an X. 

For s = j   ,     moves along the imaginary axis

which is pointing from the pole position towards the actual frequency on the imaginary axis. 

1/   +j     represents the vector
T ( jω) = 1

τ
1

(1 / τ ) + jω










Transfer function RC filter:  T (s) = 1
1+ sτ

=
1
τ

1
(1 / τ ) + s










jω

−1 / τ

Θ σ

 
r
ρ(ω)

 
r
ρ(ω)
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in polar coordinates

For the given example, the amplitude value of the 
frequency response function for frequency    is 
proportional to  the reciprocal of the length of the 
vector         from the pole location to the point j    on 
the imaginary axis. The phase angle equals the 
negative angle between             and the real axis.

 
rr (ω)

 
rr (ω)

 

T ( jω) = 1
τ

1
r
ρ(ω) e jΘ









 =

1
τ

1
r
ρ(ω)

e− jΘ( jω )








 = T ( jω) e jΦ( jω )
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Determine graphically the amplitude 
characteristics of the frequency response for a 
RC filter with R = 4.0 Ohm and C = (1.25/2  ) F 
= 0.1989495 F (1Ohm = 1(V/A), 1F = 1Asec/V ). 
Where is the pole position in the S plane? For the 
plot use frequencies between 0 and 5 Hz.

Problem 2.2
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Calculate the frequency response for the RC 
filter from Problem 2.2 using the Digital 
Seismology Tutor.

Problem 2.3

Start up: Digital Seismology Tutor
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Shape of frequency response function

different scale (dB)

Corner frequency:  0,2Hz = 1 / 5 ⋅ sec−1 = 1 / (RC ⋅2π ) 

Definition:    ωc := −
1
τ

T ( jω) = 1

1+ ω
2

ωc
2

ω→ 0 :     T ( jω) → 1 = const

ω >> ωc :  T ( jω ) →ω−1

Slopelog− log =
log10 A(ω2 ) − log10 A(ω1)
log10 (ω2 ) − log10 (ω1)

=

log10
A(ω2 )
A(ω1)








log10
ω2

ω1








T ( jω) = 1
τ

1
(1 / τ ) + jω









 =

1
1+ω2τ 2
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amplitude decreases by a factor of 10 over a full decade

or following the same argument -6 dB/octave

General rule: Rule: A single pole in the transfer function 
causes the slope of the amplitude portion of 
the frequency response function in a log-log 
plot to decrease by 20 dB/decade or 6 dB/
octave, respectively. 

Amplitude ratio in  dB (20 log10(amplitude ratio)):

SlopedB /Dω = 20 ⋅
log10

A(ω2 )
A(ω1)








log10
ω2

ω1








for  T ( jω) >> ω−1

Therefore SlopedB /dec = 20 ⋅
log10 0,1( )
log10 10( )

= −20dB   dB / decade[ ]
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The RC filter and the role of the pole

• a pole in the transfer function changes the slope
of the modulus of the frequency response function

frequency 
 by  (20 dB/dec, 6dB/oct) at a corner ω 1–

ω
c sp=

Transfer function:    T (s) = 1
1+ sτ

         pole:   sp = −
1
τ

• position determines stability

• determines boundary of ROC

• length of pole vector determines magnification

T ( jω ) ∼ 1
ρ(ω)
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Review (to read)
The central theme of this chapter was to study the behaviour of a simple electric RC circuit. We introduced the term 
filter or system as a device or algorithm which changes some input signal into an output signal. We saw that the RC 
filter is an example for a linear, time invariant (LTI) system, which could be described by a linear differential 
equation. From the solution of the differential equation for harmonic input we obtained the result that the output is 
again a harmonic signal. We introduced the concept of the frequency response function as the Fourier transform of 
the output signal divided by the Fourier transform of the input signal. The frequency response function was seen to 
have important properties: 

• The values of the frequency response function are the eigenvalues of the system.
• Knowing the frequency response function, we can calculate the output of the filter to arbitrary input signals by 
multiplying the Fourier transform of the input signal with the frequency response function.
• The frequency response function is the Fourier transform of the impulse response. Knowing the impulse response 
function, we can calculate the output of the filter to arbitrary input signals by convolving the input signal with the 
impulse response function.

We then introduced the concept of the transfer function as an even more general concept to describe a system as the 
Laplace transform of the output signal divided by the Laplace transform of the input signal. The transfer function   can 
also be seen as the Laplace transform of the impulse response function.The frequency response function could be 
derived from the transfer function by letting  s =      . We found that the transfer function of the RC circuit has a pole at 
the location -1/RC (on the negative real axis of the s plane). We also found that the (causal) impulse response of a 
system with a single pole is proportional to an exponential function espt with sp being the location of the pole. 
Therefore the causal system can only be stable if the pole is located within the left half plane of the s plane. Next, we 
introduced the step response function as yet another way to express the action of a filter. It was shown that the step 
response function and the impulse response function are closely related and can be obtained from each other by 
integration and differentiation, respectively. 

We found a way to graphically determine the frequency response function given the pole position in the s plane. From 
analysing the frequency response function in a log-log plot, we derived the rule that a pole in the transfer function 
causes a change of the slope of the frequency response function at a frequency      by 20 dB/decade with     being the 
distance of the pole from the origin of the s plane. We finally approximated the differential equation of the RC circuit 
by its difference equation which could be solved iteratively.

jω

ωc ωc
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