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Some passive-source receiver-
based methods 

•   Teleseismic travel times 
•   Teleseismic receiver functions (P and S) 
•   Body wave earthquake interferometry 
•   Ambient noise dispersion 
•   Interstation method surface wave dispersion 
….. 



Basin structure and geometry from nuclear blasts 
waveforms and teleseismic travel times 

Rodgers et al. PAGEOPH 2006;  
Tkalčić et al., BSSA 2008 



The benefits of RFs + SWD 

•  Forward modeling 
•  Linearized inversion 
•  Grid-search 
•  Non-linear inversion with  

 optimization 
•  Multi-step approach 
 

  Earth Vs structure can be inverted using: 
 1. Receiver functions (RF)  
 2. Surface wave dispersion curves   
 3. RF + dispersion curves (jointly) or other datasets 

Different approaches to modeling 



Multi-step approach 

Tkalčić et al., GJI 2011; GJI 2012 

IRFFM (Interactive RF Forward Modeling) 

Linearized 
Inversion 

Stipčević et al., GJI 2011 

Tkalčić et al., JGR 2006 

Chen et al., JGR 2010 



Lithospheric structure of Saudi Arabia, China, Australia  
& Croatia from multi-step modeling of RFs and SWs 

SE China (RFs combined with tomography) SE Australia (RFs combined with ambient noise) 

Croatia and Adriatic Sea 



Advantages and limitations of 
RFs 

•   A way to invert for Vs structure under a single 
station 
•   Sensitive to gradients (discontinuities) in Vs velocity 
•   A needed complement to crustal tomography  
•   RF + SW dispersion curves (jointly) or other datasets 
Limitations of conventional methods 

Advantages 

•   Information limited to a volume beneath a single station 
•   Insensitive to absolute velocity unless SW are added  
•   Simplifications/assumptions often cannot explain real 
Earth (1. lack of data, 2. anisotropy, 3. dipping layers, 4. 
non-uniqueness and noise in the data) 



1. Exploiting seismic signal and noise in an aseismic 
environment to constrain crustal structure 
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2. Dipping Moho 

From Stipčević,  
PhD Thesis,  

paper in preparation 

Moho depth determined using 
H–κ (above) and NA (right) 

method 



From Stipčević,  
PhD Thesis,  

paper in preparation 



Stations with similar results obtained using H-κ and NA methods 

Stipčević et al., in preparation  



Stations for which there is a large difference between  
the H-κ i NA results 

Stipčević et al., in preparation  



Moho dip determined using NA algorithm 

Stipčević et al., in preparation  



Dipping Moho – synthetic experiment 

Starting model : 
 
Two 20km thick layers in the crust 
Moho at 40 km 
with 20° dip & 270° strike 
 
Synthetics are calculated using 
Fredrickson and Bostock method 
assuming an isotropic medium, and 
synthetic RFs are determined by 
deconvolution. 
 
These synthetic RF data are then 
linearly stacked and inverted for 
Earth structure using NA method  
introduced in Exercise 6.  
  



Dipping Moho – synthetic experiment 

Starting model: 
 
Two 20km thick layers in the crust 
Moho at 40 km 
with 20° dip & 270° strike 
 
Synthetics are calculated using the  
Fredrickson and Bostock method 
assuming an isotropic medium and 
synthetic RFs are determined by 
deconvolution.  



Dipping Moho – Synthetic Experiment 

36 km 

20 km 

Earth 
model 

This is a result of the NA 
inversion when laterally 

homogeneous horizontal layers 
are assumed. 

  
It is also assumed that the 

Moho is horizontal (not dipping). 
 

(Exercise 10 in synopsis) 



Dipping Moho – Synthetic Experiment 

40km 

20 km 

Earth 
model 

Moho: D~17°; S~262°  

Now inverting for the Moho dip and orientation 



3. A multi-step approach including polarization anisotropy 

Tkalčić et al., JGR 2006 

1. 2. 

3. 4. 



4. Non-uniqueness etc. 

•  Forward modeling 
•  Linearized inversion 
•  Grid-search 
•  Non-linear inversion with optimization 
•  Multi-step approach 
•  Non-linear inversion with the Bayesian framework 
•  Transdimensional Bayes framework…hierarchical 
 
Bayes theorem: 

€ 

p(m | dobs)∝ p(dobs |m)p(m)

Different approaches to inverse problems 



The importance of knowing the data noise 
in trans-dimensional formulation 
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Hierarchical Models 
•  Relationship between data noise and model complexity 
•  Treating data noise σ as an unknown in the problem   
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Data noise = measurement uncertainty  + modeling uncertainty 

Data noise is uncorrelated 



Covariance Matrix of Noise in Data 

€ 
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Noise Parameterization 

 2 parameters :  
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Synthetic experiment 
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Synthetic experiment 
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Synthetic experiment 
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Synthetic experiment 
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Synthetic experiment 
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Application to field data 

Bodin et al., JGR 2012 



Application to Joint Inversion 
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Dispersion curve for Rayleigh waves 

Receiver Function 
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Algorithm naturally weights the information brought by each data type. 



Application to Joint Inversion 
(synthetic test) 

Vs(km/s)

D
e
p
th
(k
m
)

2 3 4 5

0

10

20

30

40

50

60

Vs(km/s)

D
e
p
th
(k
m
)

2 3 4 5

0

10

20

30

40

50

60

p(discontinuity) Vs(km/s)

D
e
p
th
(k
m
)

2 3 4 5

0

10

20

30

40

50

60

70

p(discontinuity)

Dispersion Receiver Function Joint Inversion 

Bodin et al., JGR 2012 



Application to Joint Inversion 
WOMBAT data from SE Australia:  
RFs + ambient noise dispersion  
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Future research 
 
Modelling multiple geophysical datasets will be approached through the 
transdimensional hieararchical Bayesian framework, where the number of 
free parameters and the data noise will be treated as unknowns in the 
inversion. 
 
Various simplifications that hinder the progress in crustal and 
lithospheric imaging using passive-source data and permanent/temporary 
seismic receivers will be gradually incorporated in the Bayesian inversion 
strategy – this includes, but is not limited to: anisotropy, dipping layers 
and 3D structure, noisy data, etc.  
 
This is a general strategy that can be applied to other types of inverse 
problems in Earth Science and for imaging various parts of the Earth’s 
crust. 
 
 
 
	
  
	
  


